Molecular dynamics investigations of PRODAN in a DLPC bilayer.
نویسندگان
چکیده
Molecular dynamics computer simulations have been performed to identify preferred positions of the fluorescent probe PRODAN in a fully hydrated DLPC bilayer in the fluid phase. In addition to the intramolecular charge-transfer first vertical excited state, we considered different charge distributions for the electronic ground state of the PRODAN molecule by distinct atomic charge models corresponding to the probe molecule in vacuum as well as polarized in a weak and a strong dielectric solvent (cyclohexane and water). Independent on the charge distribution model of PRODAN, we observed a preferential orientation of this molecule in the bilayer with the dimethylamino group pointing toward the membrane's center and the carbonyl oxygen toward the membrane's interface. However, changing the charge distribution model of PRODAN, independent of its initial position in the equilibrated DLPC membrane, we observed different preferential positions. For the ground state representation without polarization and the in-cyclohexane polarization, the probe maintains its position close to the membrane's center. Considering the in-water polarization model, the probe approaches more of the polar headgroup region of the bilayer, with a strong structural correlation with the choline group, exposing its oxygen atom to water molecules. PRODAN's representation of the first vertical excited state with the in-water polarization also approaches the polar region of the membrane with the oxygen atom exposed to the bilayer's hydration shell. However, this model presents a stronger structural correlation with the phosphate groups than the ground state. Therefore, we conclude that the orientation of the PRODAN molecule inside the DLPC membrane is well-defined, but its position is very sensitive to the effect of the medium polarization included here by different models for the atomic charge distribution of the probe.
منابع مشابه
Molecular dynamics simulation of interaction of Melittin and DMPC bilayer: Temperature dependence
The interaction between proteins and membranes has an important role in biological pro-cesses.We have calculated energies of interaction between Melittin and DMPC bilayer in differenttemperatures. We have used the CHARMM software for MD simulation under the canonical (N,V, E) ensemble at different temperatures. The computations have shown that water moleculeshave more penetration into the bilay...
متن کاملComparative molecular dynamics simulation studies of protegrin-1 monomer and dimer in two different lipid bilayers.
Antimicrobial peptides interact specifically with the membrane of a pathogen and kill the pathogen by releasing its cellular contents. Protegrin-1 (PG-1), a beta-hairpin antimicrobial peptide, is known to exist as a transmembrane monomer in a 1,2-dilauroylphosphatidylcholine (DLPC) bilayer and shows concentration-dependent oligomerization in a 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) bila...
متن کاملMolecular Dynamics Simulation of Water Transportation through Aquaporin-4 in Rat Brain Cells
This paper investigates the mechanism of water transportation through aquaporin-4(AQP4) of ratbrain cells by means of molecular dynamics simulation with CHARMM software. The AQP4 wasembedded into a bilayer made of Dimystroilphosphatylcholine (DMPC). The results illustrate thatwater molecules move through AQP4's channel with change of orientation of oxygen of eachwater molecule.
متن کاملStructure of the antimicrobial beta-hairpin peptide protegrin-1 in a DLPC lipid bilayer investigated by molecular dynamics simulation.
All atom molecular dynamics simulations of the 18-residue beta-hairpin antimicrobial peptide protegrin-1 (PG-1, RGGRLCYCRRRFCVCVGR-NH(2)) in a fully hydrated dilauroylphosphatidylcholine (DLPC) lipid bilayer have been implemented. The goal of the reported work is to investigate the structure of the peptide in a membrane environment (previously solved only in solution [R.L. Fahrner, T. Dieckmann...
متن کاملSurfactant-based methods for prevention of protein adsorption in capillary electrophoresis.
Surfactants such as didodecyldimethyl ammonium bromide (DDAB) and 1,2-dilauroyl-sn-phosphatidylcholine (DLPC) form bilayers at the walls of bare silica capillaries. Once formed, these bilayers are stable in the absence of surfactant in the buffer. DDAB provides a cationic bilayer coating which yields a strong reversed EOF and is effective for separation of cationic proteins. DLPC provides a zwi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. B
دوره 116 9 شماره
صفحات -
تاریخ انتشار 2012